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The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for 

measuring the two-dimensional size and shape of the source of neutrons produced in the burning DT plasma 

during the stagnation phase of ICF implosions. Very few two-dimensional projections of neutron images are 

available to reconstruct the three-dimensional neutron source. In this paper we present a technique that has 

been developed for the 3D reconstruction of neutron and x-ray sources from a minimal number of 2D 

projections.  We present the detailed algorithms used for this characterization and the results of reconstructed 

sources from experimental data collected at Omega. 
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I. INTRODUCTION 

The National Ignition Facility (NIF) performs experiments to study inertially confined thermonuclear burn of 

deuterium-tritium (DT) plasmas1, 2. Presently the required densities and pressures are achieved through indirect 

ablative compression of plastic (CH) capsules containing a DT ice layer surrounding DT gas. In this design, the gas 

inside of the DT ice layer is compressed and heated by the convergent implosion to reach temperatures of ~5 keV 

and the DT fuel assembly reaches an areal density, ρR, of greater than ~1 g/cm2. With the appropriate fuel assembly 

conditions, this system creates a less dense but hot central region (the “hot spot”), surrounded by higher density but 

colder DT fuel (the “cold fuel”). Fusion reactions and the subsequent energy deposition from alpha particles within 

the DT fuel can further heat this hot spot, generating energy beyond what is achieved from implosive mechanical 

work3.  If this system is tuned appropriately to establish ignition in the fuel assembly these implosions are predicted 

to release over a 106 joules of fusion energy and more than 1017 neutrons4.  

Tuning these implosions to achieve ignition requires the measurement of plasma conditions, such as symmetry, 

hot-spot volume and cold-fuel volume, at very small length and time scales. The hot spot is predicted to have a 30-

50 µm diameter, while the surrounding cold fuel is expected to be ~100 µm in diameter, and the fusion conditions 

must be maintained for ~100 ps 2.  

An existing neutron imaging system (NIS) at the National Ignition Facility (NIF)5 is used to provide data on the 

size and shape of the fusion hotspot and the surrounding cold fuel for ICF experiments. Typical neutron emission 

measurements at NIF show a clear asymmetric hotspot and cold fuel. A single-view image currently measured with 

NIS, which is a summation of the neutrons generated along the line of sight of the instrument (90-315 in NIF polar 

coordinates), cannot alone provide enough information to determine the three dimensional distribution of the hotspot 

or cold fuel.  This is unfortunate, as the source of this asymmetry is not fully understood and is possibly an 

indication of the processes which dominate the stagnation phase of these high convergence implosions, the most 

critical time in implosion performance. The collection of images obtained from several directions, i.e. multi-

dimensional data, would enable the study of the effects of three dimensional asymmetries on the stagnation phase 

physics, providing a measurement of 3D asymmetry and performance to observe correlations between 3D structure 

and performance as well as guiding the development and validation of 3D models and simulations. 

A conceptual design has been developed for the addition of two new neutron imaging systems at NIF6. 

However, by the nature of the current design of the existing neutron imaging system, the number of different views 

which can be implemented is limited. Thus very few projections are available to reconstruct the 3D source, resulting 

in an incomplete data set for tomographic reconstruction, which is a severely ill-posed problem7.  

To obtain a meaningful solution in the case of limited tomographic views assumptions (a priori knowledge) 

about the properties of the object need to be included to restrict the solution to the physically plausible domain. 

Therefore, algebraic reconstruction algorithms are more appropriate for this application because they allow for 

imposing additional conditions on the reconstructed solution, at a significant computational expense. It was 

previously stated that algebraic reconstruction techniques (such as SIRT or ART) in the case of limited number of 

projections have a tendency to produce less severe artifacts in limited view reconstructed objects8. It was further 
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hypothesized that regularized iterative reconstruction algorithms, for example Maximum Entropy iterative 

reconstruction, could result in even smaller artefacts8, at the cost of imposing a bias on the solution. Here we use an 

iterative Generalized Expectation-Maximization (GEM) algorithm9 to reconstruct three dimensional neutron or x-ray 

sources in the context of inertial confinement fusion experiments. 

In summary the available experimental information from a few projections does not allow for reliable artifact free 

reconstruction of the three-dimensional source in the general case. However, as we show below for source 

reconstruction in ICF experiments, it is possible using an iterative Expectation Maximization (EM) algorithm to 

reconstruct from a few two dimensional projections, if the projections are measured along judiciously chosen 

directions. The reconstructed three-dimensional emission source is not free from artifacts, but with careful analysis 

the reconstruction preserves the main features of the underlying source.  

II. THEORY/ALGORITHM 

As we mentioned in the introduction, the images obtained in ICF experiments with a neutron or x-ray imaging 

system represent two-dimensional projections of a three-dimensional source. The distance between source and 

detector is much greater than the size of the source, so assuming the paraxial approximation10, which is equivalent to 

parallel beam projection tomography, and neglecting attenuation of neutrons and hard x-rays by the source (consider 

an optically thin source), each point of these projections is a linear integral given by the following equation: 

 𝐼𝐼(𝐝𝐝,𝐩𝐩�) ≡ 𝑃𝑃𝐩𝐩�{𝑆𝑆}(𝐝𝐝) = � 𝑆𝑆(𝐝𝐝 + 𝜉𝜉𝐩𝐩�)
∞

−∞

𝑑𝑑𝑑𝑑 = � 𝑆𝑆(𝑎𝑎𝐞𝐞�1 + 𝑏𝑏𝐞𝐞�2 + 𝜉𝜉𝐩𝐩�)
∞

−∞

𝑑𝑑𝑑𝑑 (1) 

Here 𝐼𝐼(𝐝𝐝,𝐩𝐩�) is the intensity measured at position 𝐝𝐝 ≡ 𝑎𝑎𝐞𝐞�1 + 𝑏𝑏𝐞𝐞�2 on the detector for the view along direction 𝐩𝐩�; 𝐞𝐞�1 

and 𝐞𝐞�2 are basis vectors in the detector coordinate system; 𝐩𝐩� is the projection direction. The vectors 𝐞𝐞�1, 𝐞𝐞�2, and 𝐩𝐩� 

uniquely define the view, i.e. 2D projection of the 3D object. Typically the unit vectors 𝐞𝐞�1, 𝐞𝐞�2, and 𝐩𝐩� are chosen to 

be orthogonal.  

Assuming a suitable discretization of the volume and the projections, using cube-shaped volume elements (voxels), 

integral equation (1) can be approximated as a system of linear equations: 

 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑣𝑣 = ���𝐿𝐿𝑖𝑖,𝑗𝑗,𝑣𝑣
𝑘𝑘,𝑙𝑙,𝑚𝑚𝑠𝑠𝑘𝑘,𝑙𝑙,𝑚𝑚

𝑚𝑚𝑙𝑙𝑘𝑘

 (2) 

For each view of number, 𝑣𝑣, 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑣𝑣 ≡ 𝐼𝐼�𝐝𝐝𝑖𝑖,𝑗𝑗 ,𝐩𝐩�𝑣𝑣� is the measured value of the pixel (𝑖𝑖, 𝑗𝑗) at position 𝐝𝐝𝑖𝑖,𝑗𝑗 = (𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑗𝑗) on 

the detector for the projection direction 𝐩𝐩�𝑣𝑣; 𝑠𝑠𝑘𝑘,𝑙𝑙,𝑚𝑚 ≡ 𝑆𝑆(𝐫𝐫𝑘𝑘,𝑙𝑙,𝑚𝑚) is the value of the source inside the voxel (𝑘𝑘, 𝑙𝑙,𝑚𝑚) at 

position 𝐫𝐫𝑘𝑘,𝑙𝑙,𝑚𝑚 = (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑙𝑙 , 𝑧𝑧𝑚𝑚); and 𝐿𝐿𝑖𝑖,𝑗𝑗,𝑣𝑣
𝑘𝑘,𝑙𝑙,𝑚𝑚 is the length of intersection of the line through the pixel (𝑖𝑖, 𝑗𝑗) along the 

direction 𝐩𝐩�𝑣𝑣 with the voxel (𝑘𝑘, 𝑙𝑙,𝑚𝑚) known as the Siddon coefficients11. The described projection geometry and the 

introduced notations are illustrated in Figure 1. 
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Figure 1. Projection geometry and notations 

 

Equation (2) can be written in a matrix notation: 

 𝐈𝐈 = 𝐋𝐋𝐋𝐋 (3) 

where 𝐈𝐈 = �𝐼𝐼𝜁𝜁 ≡ 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑣𝑣�, 𝐋𝐋 = �𝐿𝐿𝜁𝜁,𝜂𝜂 ≡ 𝐿𝐿𝑖𝑖,𝑗𝑗,𝑣𝑣
𝑘𝑘,𝑙𝑙,𝑚𝑚�, and 𝐬𝐬 = �𝑠𝑠𝜂𝜂 ≡ 𝑠𝑠𝑘𝑘,𝑙𝑙,𝑚𝑚�. Here the composite index 𝜁𝜁 = (𝑖𝑖, 𝑗𝑗, 𝑣𝑣) numerates 

pixels in the projections, and the composite index 𝜂𝜂 = (𝑘𝑘, 𝑙𝑙,𝑚𝑚) numerates the voxels.  

In the real world the image 𝐈𝐈 is measured along with noise, so the neutron source reconstruction problem 

becomes: 

 𝐈𝐈 = 𝐋𝐋𝐋𝐋 + 𝛆𝛆, (4) 

where 𝐈𝐈 and 𝐋𝐋 are known, and 𝛆𝛆 is unknown additive noise.  

One well established method of solving equation (4) is the expectation-maximization (EM) algorithm12, also 

known as the Lucy-Richardson method13, 14. The algorithm starts with an initial guess for the solution, calculates the 

projected image, and iteratively updates the solution according to Bayes’ theorem for conditional probabilities. It 

was shown that the iterations converge to the solution in the sense of maximum-likelihood estimation (MLE)13, 15. 

An implementation of this and the similar technique is described in details in10. 

However, as it was mentioned before, in ICF experiments very few 2D projections are available to reconstruct 

the 3D source, thus equation (4) in practice is typically ill-defined, i.e. the number of unknowns is greater than the 

number of independent equations. This aspect of the problem leads to an increasingly non-smooth, and, therefore, in 

our application, non-physical solution as iterations approach ML solution. To overcome this property of this 

algorithm an additional restriction on the solution is necessary.  
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One way to achieve this in the framework of an EM algorithm is to introduce a probability measure of the solution 

based on a Gibbs distribution9: 

 𝑝𝑝𝐺𝐺(𝐒𝐒) =
1
𝐾𝐾
𝑒𝑒−𝑈𝑈(𝐒𝐒)/𝛽𝛽 (5) 

where 𝑝𝑝𝐺𝐺(𝐒𝐒) is the probability of the configuration 𝐒𝐒, 𝑈𝑈(𝐒𝐒) is the “energy” function, 𝐾𝐾 is a normalization constant, 

and 𝛽𝛽 is a regularization parameter. With a Gibbs prior the solution of the equation (4) now becomes9: 

 𝐒𝐒𝐺𝐺 = arg max
𝐒𝐒

�𝑙𝑙(𝐒𝐒) −
𝑈𝑈(𝐒𝐒)
𝛽𝛽

� , (6) 

where 𝑙𝑙(𝐒𝐒) is a log-likelihood function. Note that as 𝛽𝛽 → +∞ equation (6) results in the ML estimation. 

The energy function, in many cases, can be limited to pair-wise priors16: 

 𝑈𝑈(𝐒𝐒) = � � 𝑉𝑉(𝑠𝑠𝜂𝜂 , 𝑠𝑠𝜂𝜂′)
𝜂𝜂′∈𝑁𝑁(𝜂𝜂)𝜂𝜂

 (7) 

where 𝑁𝑁(𝜂𝜂) is a set of neighbor voxels of the voxel 𝜂𝜂; and 𝑉𝑉(𝑠𝑠𝜂𝜂 , 𝑠𝑠𝜂𝜂′) is a potential function defined by values of the 

voxels 𝜂𝜂 an 𝜂𝜂′. It was shown that in most cases a first-order neighborhood in three dimensions may be sufficient9. 

Typically, the potential functions are quadratic, i.e. 𝑉𝑉�𝑠𝑠𝜂𝜂 , 𝑠𝑠𝜂𝜂′� = �𝑠𝑠𝜂𝜂 − 𝑠𝑠𝜂𝜂′�
2
, or linear, i.e. 𝑉𝑉�𝑠𝑠𝜂𝜂 , 𝑠𝑠𝜂𝜂′� = �𝑠𝑠𝜂𝜂 − 𝑠𝑠𝜂𝜂′�. 

The latter is also known as the Huber function. These potentials can be augmented by introducing the generalized 

Huber functions ℎ𝜇𝜇,𝑝𝑝(𝑡𝑡) 17: 

 𝑉𝑉�𝑠𝑠𝜂𝜂 , 𝑠𝑠𝜂𝜂′� = ℎ𝜇𝜇,𝑝𝑝(𝑡𝑡) = �
|𝑡𝑡|2/2𝜇𝜇, 𝑖𝑖𝑖𝑖 |𝑡𝑡| ≤ 𝜇𝜇1/(2−𝑝𝑝)

|𝑡𝑡|𝑝𝑝/𝑝𝑝 − 𝛿𝛿, 𝑖𝑖𝑖𝑖 |𝑡𝑡| > 𝜇𝜇1/(2−𝑝𝑝)  (8) 

where 𝑡𝑡 = 𝑠𝑠𝜂𝜂 − 𝑠𝑠𝜂𝜂′; 𝛿𝛿 = (1/𝑝𝑝 − 1/2)𝜇𝜇𝑝𝑝/(2−𝑝𝑝); when 𝑝𝑝 = 0, |𝑡𝑡|𝑝𝑝/𝑝𝑝 is assumed to be log|𝑡𝑡| and 𝛿𝛿 = (log 𝜇𝜇 − 1)/2. 

In the case 𝑝𝑝 = 1 the potential function is a linear, i.e. a Huber function, and for 𝑝𝑝 = 2 the potential is quadratic. To 

avoid singularities this potential is always quadratic in the small neighborhood of 𝑡𝑡 = 0, which is defined by the 

parameter 𝜇𝜇. Note that the potential is a non-convex function for 𝑝𝑝 < 1. 

The derivation and implementation of the iterative algorithm considered in this work to solve equation (6) is 

described in detail in9. The algorithm is referred to as a generalized expectation-maximization (GEM) algorithm. 

Finally, it should be mentioned, that an important question for practical applications of an iterative scheme is when 

to stop the iterations. One simple and useful stopping rule, considered here, is to compute the relative change of the 

residual from one iteration to the next iteration: ∆𝜌𝜌 ≡ �𝜌𝜌(𝑡𝑡) −  𝜌𝜌(𝑡𝑡+1)�/𝜌𝜌(𝑡𝑡), where 𝜌𝜌(𝑡𝑡) is some measure of the 

residual at the t-th iteration, and stop the iterations as soon as this relative change is below some value. Typically, 

reduced chi-square or Kullback-Leibler distance is used as a measure of the residual. Empirically it was found that 

critical value ~10-3 provides a robust stopping criterion in most cases. 

 

III. MODEL RECONSTRUCTION 

Typically tomographic reconstructions utilize a large number of views collected in the same plane.  This is the 

preferable measurement scheme and, for example, the tomographic diagnostic in the radiographs of the Advanced 

Hydrotest Facility (AHF) project18 settled on this scheme. It was estimated that to ensure reliable reconstruction of a 
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three-dimensional object minimum 12 views uniformly distributed in the equatorial plane were required. When 

using a smaller number of views, however, the reconstruction strategy is different and become experiment specific. 

To illustrate this statement and evaluate the fidelity of the reconstruction of a 3D source using very few projections 

(~3-5), we model three different projection schemes: 

a) three equatorial views: 1 - (90, 0), 2 – (90, 60), 3 – (90, 120) 

b) three views along coordinate axes: 1 - (0, 0), 2 – (90, 0), 3 – (90, 90) 

c) four views “equally” distributed: 1 - (0, 0), 2 – (45, 0), 3 – (90, 60), 4 – (135, 120) 

Here the numbers in parentheses are polar coordinates - (inclination, azimuth) – of the corresponding view in 

degrees. The model 3D source we used in the simulations to study the measurement scenarios consists of a toroid 

imbedded inside a sphere. The emission (of x-rays or neutrons) is set to 1 arbitrary unit (a.u.) inside the sphere and 

to 3 a.u. inside the toroid. Figure 2 shows the model source and angular position of the views (projections) used in 

the simulations. 

   
Figure 2. From left to right: a) three equatorial projections; b) three projections along coordinate axes; c) four 

projections more or less equally distributed over hemisphere. 2D projection positions are not to scale. 

The source was reconstructed from the simulated projection data using the GEM algorithm with a quadratic 

potential (𝑝𝑝 = 2, see eq. (8)). The regularization parameter 𝛽𝛽 was chosen so that 𝑈𝑈(𝐒𝐒)/𝛽𝛽𝑙𝑙(𝐒𝐒)~10−3 at the end 

iteration. The volume grid consisted of 67 × 67 × 67 voxels with voxel size 3 × 3 × 3 micrometers cubed. The 

iteration was stopped when the relative change of residual norm became less than10−4. We choose to use this 

criterion to avoid the premature termination of iteration, taking into account that GEM algorithm is robust with 

respect to over iteration9. It should be noted that symmetry properties of the object were not used to improve the 

reconstruction. The same reconstruction parameters were used for all three projection schemes. The figures below 

illustrate the reconstruction results. 



 7 

 
Figure 3. Reconstruction using three equatorial views (projection scheme a): xy-plane slices (every fourth slice is 

shown). 

Figure 3 shows xy-plane slices of the 3D source reconstructed from three equatorial views (see Figure 2, projection 

scheme a). As it can be seen in this figure the reconstructed source preserves the main features of the original model 

source: i.e. a toroid with emission 3 a.u. inside a sphere with emission 1 a.u. However with only three equatorial 

views artifacts are introduced in the shape in directions that are not directly measured.  The artifacts of the limited 

views results in a hexagonal structure, reflecting a six-fold rotation symmetry axis of projection directions, evident 

both in the shape of the toroid and in the shape of the sphere. 
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Figure 4. Three view along coordinate axes reconstruction (projection scheme b): xy-plane slices (every fourth 

slice is shown). 

Figure 4 shows xy-plane slices of the 3D source reconstructed from three projections along the orthogonal 

coordinate axes (see Figure 2, projection scheme b). As it is evident from the figure, the shape of the reconstructed 

toroid exhibits rectangular artifacts consistent with the symmetry of the projection directions (three four-fold 

rotation axes); however, the artifacts in this case are not as pronounced as in the previous case. The polar areas of 

the reconstructed sphere show clear rectangular shape. 
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Figure 5. Four views reconstruction (projection scheme c): xy-plane slices (every fourth slice is shown). 

Figure 5 shows xy-plane slices of the 3D source reconstructed from four projections more or less equally distributed 

over the hemisphere (see Figure 2, projection scheme c). In this case the projection directions do not have symmetry 

axes (a six-fold rotation axis for three equatorial views, and three four-fold rotation axes for the projections along 

coordinate axes). Consequently the artifacts in the reconstructed object do not exhibit the corresponding symmetry. 

But, once again, the reconstructed object exhibits artifacts due to inadequate sampling of the angular directions. 

To further illustrate the shape of the reconstructed sources, the iso-surfaces of reconstructed objects are shown in 

Figure 6.  
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Figure 6. Iso-surface rendering of the reconstructed objects (from left to right): a) three equatorial projections; b) 

three projections along coordinate axis; c) four projections more or less equally distributed. The iso-surfaces are 

drawn at 20% (blue), 40% (green), 60% (cyan), and 80% (red) levels of maximum value of the reconstructed 

source. 

As it is evident from Figure 2 in all three cases the main geometrical features on the model source are appropriately 

reconstructed. The reconstruction artifacts reflect the symmetry of the projection directions.  

 

IV. EXPERIMENTAL DATA RECONSTRUCTION AND ANALYZYS 

The algorithm was tested using multi-view x-ray imaging at the Omega Laser in Rochester, New York19. Four CID-

based, time-integrated x-ray pinhole cameras recorded images of x-ray emission from deuterium filled capsule 

implosions, some of which were driven asymmetrically to produce oblate or prolate spheroid sources. These 

cameras were tuned to image the Bremsstrahlung emission from the hot core of the implosion, using 152 µm of Be 

and 203 µm Al filtration. Data from Omega shot #77186 was analyzed and is presented here. 

The angles of the projections in the Omega coordinate system – (inclination, azimuth) in degrees – are as follows: 

1–(37.8, 234.0), 2–(100.81, 54.0), 3–(100.81, 342.0), 4–(63.44, 54.0). To minimize the reconstruction volume the 

Omega coordinate system was rotated about an axis orthogonal both to the Omega drive axis and the z-axis to align 

the latter with the Omega drive axis. Figure 7 shows angular position of the views (projections) in this rotated 

coordinate system. The model object, described further in this section, is also shown in figure 7 to illustrate the 

symmetry and general shape of the x-ray source expected in this experiment. 
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Figure 7. Projection directions in the coordinate system rotated to align Omega drive axis with the z-axis: 

equatorial view (left), and polar view (right). 2D projection positions are not to scale. 

The 3D x-ray source was reconstructed using the GEM algorithm with a quadratic potential (𝑝𝑝 = 2, see eq. (8)). The 

regularization parameter 𝛽𝛽 was chosen so that 𝑈𝑈(𝐒𝐒)/𝛽𝛽𝑙𝑙(𝐒𝐒)~10−3 at the end iteration. The volume grid consisted of 

21 × 21 × 21 voxels with voxel size 9.6 × 9.6 × 9.6 micrometers cubed. Iteration was stopped when the relative 

change of residual norm became less than 10−4. The reconstruction results are shown in the figures below. Figure 8 

shows xy-plane slices of the 3D source reconstructed from four projections and Figure 9 shows iso-surfaces drawn at 

different levels to illustrate the shape of the reconstructed source.  
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Figure 8. Reconstructed 3D x-ray source: xy-plane slices 
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Figure 9. Iso-surfaces of the reconstructed 3D x-ray source from shot 77186: equatorial view (left), and polar view 

(right). The iso-surfaces are drawn at 20% (blue), 40% (green), 60% (cyan), and 80% (red) levels of maximum 

value of the reconstructed source. Black dashed lines in the polar view represent projection directions. 

As is evident from Figure 8 and Figure 9 the shape and the size of the reconstructed source is close to what could be 

expected in this experiment. However, it is also evident from these figures, that the reconstructed object is somewhat 

elongated along the direction in equatorial plane, which the majority of the projection directions are roughly aligned. 

This might be due to the effect of overabundant projection directions studied in details in20. It has been shown20 that 

some algorithms, such as ART or SIRT with the incorrect choice of reconstruction parameters, tend to elongate the 

reconstructed objects in the primary direction of projection (if the angular distribution of projection directions 

warrants a primary direction). One way to study the reconstruction results is to simulate the projection and the 

reconstruction of an object with the similar size and shape, but without noise. A comparison of the reconstructed 

results in simulation with the known initial source allows a study of the systematic errors in this reconstruction 

algorithm. 

The model 3D source we used to study the reconstructed x-ray source consists of four prolate spheroids imbedded 

into each other. The major, minor semi-axes and the emission rates of the spheroids are selected so that the model 

source is close to the reconstructed x-ray source. The axes are: 1 – (70, 37.5), 2 – (57, 30), 3 – (38.5, 17), 4 – (17, 

11). Here the numbers in parentheses are the major and minor semi-axes of the corresponding spheroids in 

micrometers. The emission rates of the spheroids are: 0.3, 0.5, 0.7, and 1 in arbitrary units. The model 3D x-ray 

source was reconstructed using the same algorithm and reconstruction parameters as were used to reconstruct the 

experimental x-ray source. Figure 10 shows iso-surfaces of the reconstructed model source. 
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Figure 10. Iso-surfaces of the reconstructed model 3D x-ray source: equatorial view (left), and polar view (right). 

The iso-surfaces are drawn at 20% (blue), 40% (green), 60% (cyan), and 80% (red) levels of maximum value of 

the reconstructed source.  Black dashed lines in the polar view represent projection directions. 

As is evident from Figure 10 the reconstructed object has the correct overall shape and size, in addition the internal 

structure is also accurately reconstructed. The slight elongation along the primary direction of projection is visible in 

the right panel of Figure 10. However this elongation is rather small compared with the elongation of experimental 

source reconstruction. Thus, the analysis of the simulation results allows us to state, with high  confidence, that the 

shape, the size, and the internal structure of the reconstructed x-ray source from the measured projections correctly  

describes the properties of the actual x-ray source.  

 

V. CONCLUSIONS 

As discussed earlier, to better understand the inherently three dimensional nature of ICF fusion implosions at NIF it 

is necessary to develop a multiple view neutron imaging technique that allows for the reconstruction of the three 

dimensional distribution of the hotspot and cold fuel. This requires the implementation of a tomographic imaging 

technique. One significant obstacle in developing and deploying such a system is that the number of views, which 

can be practically implemented, is limited to very few ~3. We conclude that the available experimental information 

from a few projections does not allow for reliable artifact free reconstruction of the three-dimensional source in the 

general case. However, as we have shown here, it is possible using an iterative EM algorithm with a Gibbs prior to 

reconstruct the three-dimensional source, which preserves the main features of the underlying source, using the two-

dimensional projection data measured from only three directions. The reconstruction results faithfully measure the 

general shape (symmetry, topology), the size, and the internal structure of the three-dimensional object. The 

reconstructed distribution is not free from artifacts and is affected by projection symmetries and the angular 

distribution of projection directions. To minimize the artifacts, the projection directions should be judiciously 
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chosen. For the most accurate reconstruction of emission from nearly spherical ICF implosions the optimum 

projection directions are along three orthogonal axes. In order to avoid misinterpretation, such as attributing an 

artifact as features of a source, careful interpretation of the reconstructed result is needed. This can be done through 

simulation, where the projection and the reconstruction of a source with the similar size and shape is used to study 

and compare the simulated reconstruction artifacts with reconstructions from the experimental data. 
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